

Using Nanostructured Materials to Modulate the Immune System

University of California San Francisco Tejal A. Desai Professor and Chair

Dept. of Bioengineering and Therapeutic Sciences

How can material structure modulate cellular function for therapeutic purposes?

Can we tune material structure to modulate fibrosis?

Fibrosis: Fibroblasts Activated by Aberrant Mechanical Tension and TGFβ

High Aspect Ratio Features Provide Anti-fibrotic Signals

FITC-IgG Adsorption Vinculin, F-Actin, DAPI

Kam, et. al, Nanoletters 2013; Tissue Engineering 2014

Long aspect ratio structures inhibit fibroblast activation *in vitro*

Allen, Ryu et al., 2016

Long Structures Decrease Fibrotic Response *in vivo*

Nanorod fabrication scheme

Zamecnik et al., ACS Nano 2017.

Nanowires alter cellular morphology and actin cytoskeleton

Merge Phalloidin Nanowires DAPI nanowires $\mathbf{N}_{\mathbf{0}}$ nanowires Low nanowires High

Nanowires decrease TGF β and collagen transcription

UCSF

Can we use "nanostructure" to enhance immunotherapy?

Systemic Cytokine Therapy

Features vs. Challenges

Strategy

Endogenous cytokine capture for prolonged & localized immune activation

Nanostructures as an injectable cytokine trap

Nanowires can conjugate to IgG species and sequester cytokines

Scale Bar 20µm

Nanowires persist *in vivo* for >6 weeks

4 week

2 week

6 week

Can we use this strategy to activate T cells *specifically* and *locally*?

Nature Reviews | Immunology

S4B6 antibody-conjugated wires locally activate NK andd CD8 Cells *in vivo*

JES6-1-NWs locally activate Tregs and inhibit Teffs in the skin

JES6-1 NWs have little effect in the draining lymph nodes

Disease Model – K5-TGO-DO11 Autoimmune Skin Disease

- K5-TGO-DO11 transgenic mouse that exhibits antigen specific immune response to OVA
- OVA under control of tetracycline promotor in keratinocytes,
- Leads to acute dermatitis and influx of CD4's into the skin

<u>Hypothesis</u> – local augmentation of Treg activation before antigen is turned on will ameliorate disease phenotype

Ab-NWs selectively activate antigen specific Tregs - but not effector cells - in the skin

Decreased epithelial hyperplasia and myeloid infiltrate observed in vivo

"Nanostructured" implants for improved wound healing: Stents and Vascular Grafts

Lee et al, Nanoletters 2014; ACS Biomaterial Science, 2016

Injected Microstructures preserve and improve cardiac output after MI

Le LV et al., Biomaterials 2018

Harnessing micro- and nanotopographical cues for therapy

Acknowledgements

The Therapeutic Micro and Nanotechnology Laboratory at UCSF

- NIH
- NSF
- JDRF
- Zambon Ltd
- Al Mann Institute
- CIRM
- Eli Lily
- Abbvie
- Santen
- Gates Foundation

Characterizing mechanics of fibers

Nanoindentation:

- 1590 N/m for short versus 750 N/m for long microfibers (** p < 0.01, n \ge 12)
- constant prescribed displacement rate of 10 nm/s

